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When the individual particles in an otherwise quiescent suspension of freely suspended
spherical particles are acted upon by external couples, the resulting suspension-scale
fluid motion is characterized by a non-symmetric state of stress. Viewed at the inter-
stitial scale (i.e. microscopic scale), this coupling between translational and rotational
particle motions is a manifestation of particle–particle hydrodynamic interactions
and vanishes with the volume fraction φ of suspended spheres. The antisymmetric
portion of the stress is quantified by the suspension-scale vortex viscosity µv ,
different from the suspension’s shear viscosity µ. Numerical boundary element method
(BEM) simulations of such force-free suspensions of spheres uniformly dispersed in
incompressible Newtonian liquids of viscosity µ0 are performed for circumstances in
which external couples (of any specified suspension-scale position-dependence) are
applied individually to each of the suspended particles in order to cause them to
rotate in otherwise quiescent fluids. In the absence of external forces acting on either
the spheres or boundaries, such rotations indirectly, through interparticle coupling,
cause translational motions of the individual spheres which, owing to the no-slip
boundary condition, drag neighbouring fluid along with them. In turn, this combined
particle–interstitial fluid movement is manifested as a suspension-scale velocity field,
generated exclusively by the action of external couples. Use of this scheme to
create suspension-scale particle-phase spin fields Ω and concomitant velocity fields
v enables both the vortex and shear viscosities of suspensions to be determined as
functions of φ in disordered systems. This scheme is shown, inter alia, to confirm
the constitutive equation, Ta = 2µvε · [(1/2)∇ × v − Ω], proposed in the continuum
mechanics literature for the linear relation between the antisymmetric stress Ta and
the disparity existing between the particle-phase spin rate Ω and half the suspension’s
vorticity, ∇ × v (with the third-rank pseudotensor ε the permutation triadic). Our
dynamically based BEM simulations confirm the previous computations of the
Prosperetti et al. group for the dependence of the vortex viscosity upon the solids
volume fraction in concentrated disordered suspensions, obtained by a rather different
simulation scheme. Moreover, our dynamically based rheological calculations are
confirmed by our semi-independent, energetically based, calculations that equate the
rates of working (equivalently, the energy dissipation rates) at the respective interstitial
and suspension scales. As an incidental by-product, the same BEM simulation results
also verify the suspension-scale Newtonian constitutive equation, T s = µ[∇v + (∇v)†],
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as well as the functional dependence of the shear viscosity µ upon φ found in the
literature.

1. Introduction
The vortex viscosity µv of suspensions of particles plays an important role in the

dynamics of magnetic fluids (ferrofluids), materials of technological importance in a
variety of applications-oriented and scientific contexts (Rosensweig 1997, 2003). The
present paper aims, inter alia, to present simulation-based data for µv as a function
of the volumetric particle concentration φ in homogeneous non-colloidal suspensions
of monodisperse spheres. While such rheological data may not necessarily prove to
be quantitatively useful in ferrofluid rheology owing to their failure to address either
rotational Brownian motion (Brenner & Weissman 1972) or interparticle magnetic
forces (Rosensweig 1997, 2003), their availability to researchers would nevertheless
appear to represent a promising start. A secondary objective pertains to clarifying the
role, if any, of couple stresses C (Condiff & Dahler 1964) in the general context of
antisymmetric stresses and energetics in suspensions. Condiff & Dahler (1964) include
the couple stress in the angular momentum equation as

ρκ2 DΩ

Dt
= ∇ · C + T× + G. (1.1)

Apart from the usual symbols appearing in (1.1), the scalar κ is the radius of
gyration, while the pseudovector Ω is the spin field. Moreover, the pseudovector G
denotes the external body-couple density field (on a per unit volume basis), while
T × denotes the pseudovector of the antisymmetric stress. However, for the reasons
described in the Appendix, pertaining to the continuum aspects of (1.1), and as was
independently confirmed by our BEM calculations, this couple stress contribution
proves to be a vanishingly small non-continuum contribution of O(a/L)2 for the class
of problems addressed herein, where a is the radius of the spheres and L is the length
scale on which the suspension-scale field velocity field varies. As such, the possible
contribution of C to (1.1) has been explicitly eliminated from further consideration.
It is also demonstrated in the Appendix that, for similar non-continuum reasons, the
rotational inertial term appearing on the left-hand side of (1.1) is negligible in the
present class of problems. Furthermore as discussed in the Appendix, in the absence
of couple stress contributions, it is unnecessary to specify a suspension-scale spin
boundary condition on solid surfaces. These conclusions allow us to focus on the
µv vs. φ functional relation in a simple system that is structureless (i.e. disordered)
and behaves as a continuum without the interference of couple stress, non-continuum
effects, spin boundary conditions, and normal stress differences arising from the
existence of microstructure in the suspensions (Gadala-Maria 1979; Drazer et al.
2004; Sierou & Brady 2002).

As far as we are aware, only one previous simulation scheme has explored the µv

vs. φ functional relation in disordered suspensions over a significant range of particle
concentrations. We refer here to the work of Prosperetti and his group (Marchioro,
Tanksley & Prosperetti 2000; Marchioro et al. 2001; Wang & Prosperetti 2001;
Ichicki & Prosperetti 2004), hereafter referred to collectively as Prosperetti et al.,
and covering the concentration range up to φ = 0.5. It will be seen that our vortex
viscosity results, which cover the range up to φ =0.3, agree excellently with those of the
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Prosperetti et al. group. Since our boundary element method (BEM) computations
are based upon a different simulation scheme, such independent agreement inspires
confidence in the validity of the µv vs. φ results of both groups, at least over their
common range of concentrations.

Our simulation scheme differs from that of Prosperetti et al. In particular, their
periodic Green’s function simulations were performed on unbounded suspensions
using spatially periodic boundary conditions extending in all three spatial directions.
In contrast, our BEM simulations involved the presence of external boundaries
surrounding the suspension laterally, on whose bounding surfaces conventional,
physical, no-slip, fluid-mechanical boundary conditions were satisfied. Spatially
periodic boundary conditions were invoked in our work only in the unbounded
direction(s) parallel to these external material boundaries. This basic difference, in
the light of the concordance of our results with those of the Prosperetti et al. group,
allows us to explicitly affirm the robustness of the rheological constitutive equation
governing the antisymmetric stress, as well as the reliability of the phenomenological
vortex viscosity vs. particle concentration data derived from our respective simulations.
Among other things, our BEM simulation scheme enabled us to clearly distinguish
those contributions to the antisymmetric stress arising from the vortex viscosity µv

appearing in the deviatoric stress tensor T from those contributions arising from the
spin viscosity µs appearing in the couple-stress tensor C of Condiff & Dahler (1964)
(cf. the Appendix). The work of Prosperetti et al. does not mention the subject of such
couple stresses. Given the pre-eminent role assigned to couple stresses and hence to the
spin viscosity in ferrofluid hydrodynamics (Rinaldi & Zahn 2002), whether warranted
or not, the ability of our scheme to effect this important distinction provides a basis for
regarding our work as contributing not only constitutively and phenomenologically
to the subject of antisymmetric stresses, but also conceptually to the fundamental
issue of couple stresses.

The trio of suspension-scale conservation equations governing the flow of
incompressible suspensions composed of force-free particles are, in the absence of
couple stresses (Dahler & Scriven 1961; Condiff & Dahler 1964; Brenner & Nadim
1996), respectively given by the following expressions:

(i) conservation of mass

∇ · v = 0; (1.2)

(ii) conservation of linear momentum

ρ
Dv

Dt
= −∇p + ∇ · T s − 1

2
∇ × T ×; (1.3)

(iii) conservation of angular momentum

ρκ2 DΩ

Dt
= T × + G. (1.4)

In (1.3), the deviatoric stress dyadic T has been decomposed into symmetric and
antisymmetric portions,

T = T s + Ta, (1.5)

in which the antisymmetric portion, Ta , has been further re-expressed in terms of the
pseudovector, T ×, of the antisymmetric stress via the identity,

T × = −ε: Ta, (1.6)
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wherein ε = −I × I is the third-order permutation pseudotriadic, in which I is
the dyadic idemfactor, and wherein the double-dot notation follows the nesting
convention (Dahler & Scriven 1961), rather than that of Gibbs. The inverse of (1.6)
is Ta =(1/2)ε · T ×.

The appearance of T × in both (1.3) and (1.4) serves to couple the respective linear
and angular momentum equations. Subject to a posteriori verification, the suspension-
scale constitutive equations governing the symmetric and antisymmetric portions of
the deviatoric stress are assumed to be of the respective forms

T s = µ[∇v + (∇v)†] (1.7)

and (Dahler & Scriven 1961; Condiff & Dahler 1964)

T × = 4µv

(
1
2
∇ × v − Ω

)
, (1.8)

in which µ and µv are, respectively, the suspension-scale shear and vortex viscosities.
The spin field Ω is implicitly understood to be the angular velocity of the particulate
phase of the two-phase mixture.

The validity of (1.7) relies on the assumption of the structureless nature of the
continua considered. Were the microstructure of the suspension and other non-
Newtonian behaviour considered, (1.7) would be incomplete (Gadala-Maria 1979;
Drazer et al. 2004; Sierou & Brady 2002) and it would thus be impossible for us
to draw definitive conclusions pertaining to the antisymmetric stress components
from this study. In the absence of external body couples and microstructure of
the continuuum, the deviatoric stress tensor T would be symmetric according to the
inertia-free form of (1.4). In such circumstances (1.8) shows that Ω =(1/2)∇ × v, which
represents a limiting condition such as exists in suspensions with random hard-sphere
distributions, whereby the particulate phase spins with one-half the local vorticity
∇ × v of the suspension (de Groot & Mazur 1962; Drazer et al. 2004). This state
corresponds to that which occurs in conventional particle-free homogeneous fluid
continua, where the spin field Ω of the fluid continuum is imagined to be measured
by the local rate of rotation of a small hypothetical unconstrained spherical particle.

The applicability of the Newtonian rheological constitutive expression (1.7) for
the symmetric deviatoric stress, T s , in non-colloidal incompressible suspensions of
spherical particles has been theoretically documented in the case of dilute suspensions
by many, beginning with Einstein (1956) in 1905, and including Burgers (1936),
Brenner (1958), Landau & Lifshitz (1959), Batchelor (1967, 1970), as well as many
others. For the case of concentrated systems, numerous experiments and simulations
have furnished both the shear viscosities and their respective φ-dependences, some
values of which are later summarized in connection with figure 6. Our own BEM
simulation results for the µ/µ0 vs. φ relationship in concentrated disordered sphere
suspensions will be seen to be generally consistent with these other data.

As regards experimental support for the validity of the constitutive expression
(1.8) for the antisymmetric stress, no definitive evidence appears to exist despite its
widespread use in the context of ferrofluid hydrodynamics (Rosensweig 1997, 2003).
On the other hand, theoretical evidence, albeit only for dilute suspensions, does
exist (Goldman, Cox & Brenner 1967; Brenner 1970a, b, 1984), although Zuzovsky,
Adler & Brenner (1984) do provide some theoretical data for non-dilute ordered
suspensions composed of spheres in spatially periodic arrays. While the simulation
work of the Prosperetti et al. group might appear to substantiate the constitutive
equation (1.8) in concentrated systems, it does not actually do so. Rather, assuming
its validity a priori, their work enables one to calculate a quantity represented by the
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symbol µv (at each and every φ), defined as the proportionality coefficient appearing
in the relation (1.8). It does not, however, prove for the same value of φ that identical
values of µv would be obtained in all physically possible rheological experiments.
For example, were it to turn out, contrary to our earlier claims, that couple-stress
contributions to the angular momentum equation were indeed sensible, without
incorporating that possibility into the interpretation of (1.4), the verification of the
constitutive equation (1.8) would not be possible.

Of course, no simulation scheme, including ours, can demonstrate the general
validity of (1.8) for all of the infinitely many, experimentally possible rheological
apparatus configurations. Nevertheless, by postulating the generic correctness of
(1.8), it will be seen in what follows that the same µv/µ0 vs. φ relationship (within
statistically acceptable uncertainties) is obtained from our BEM simulations for at
least two classes of rheological experiments, corresponding kinematically to Couette-
and Poiseuille-type flows. Moreover, it will be seen, again to within statistically small
uncertainties, that the functional µv/µ0 vs. φ relationship obtained by using tensorial
dynamical arguments is confirmed when employing semi-independent scalar energetic
arguments. This consistency would appear to represent convincing evidence in support
of the constitutive relation (1.8) as well as of the accuracy of the accompanying
numerical values of the vortex viscosity. Identical arguments and commentary apply
with respect to the peripheral suspension-scale shear viscosity constitutive issues in
the context of (1.7).

Our twin goals of justifying the constitutive equations (1.7) and (1.8) and of
calculating both the vortex and shear viscosities in non-dilute disordered suspensions
are addressed herein by the use of boundary element methods. This scheme is
employed to solve the detailed creeping flow equations in the interstitial fluid
regions between the suspended particles and the bounding walls as well as between
the suspended particles themselves, with each force-free sphere subject to an
externally applied couple sufficient to collectively create suspension-scale flow in
which antisymmetric stresses co-exist along with conventional symmetric stresses. We
study two cases. In the first, force-free translationally mobile spheres confined between
a pair of no-slip parallel plates are made to rotate with position-independent angular
velocities, so as to generate a suspension-scale simple shear (Couette) flow. Similarly,
in the second case, particles confined within a circular tube are made to rotate about
appropriate axes with position-dependent angular velocities varying linearly with the
distance of the particle from the tube axis, thereby generating a parabolic (Poiseuille)
suspension-scale velocity field.

While each of these couple-animated Couette and Poiseuille flows is kinematically
identical to its conventional couple-free, force-driven counterpart, whose dynamics
entail only purely symmetric stresses, they nevertheless differ profoundly in their
dynamic attributes from the latter, owing to the existence of antisymmetric stresses
generated by the external couples applied to the particles, causing their rotations.
(Differences exist not only in their respective dynamics, but also in their energetics,
leading to differing energy requirements in the respective couple-animated and couple-
free cases despite their kinematically identical velocity fields.) For example, whereas
conventional couple-free parabolic Poiseuille flow of a homogeneous particle-free fluid
in a tube at a mean velocity V̄ , say, arises from an axial pressure gradient imposed
by applying an external force to the fluid as a whole, such suspension-scale pressure
gradients are deliberately excluded from our external force-free, couple-driven flow,
which achieves the same parabolic velocity field with mean velocity V̄ via particle
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rotation alone (although local pressure gradients will necessarily exist at the interstitial
scale, albeit averaging out to a zero-mean value).

Overall, this paper consists essentially of two distinct portions, the first culminating
in a dynamically based calculation of the antisymmetric stress/vortex viscosity
relation, furnishing the dependence of µv upon φ. This is accomplished for both of
the suspension-scale Couette- and Poiseuille-type velocity fields described above (with
the subsequent, independent, BEM calculations of both data sets shown to predict
essentially the same concentration dependence of the vortex viscosities). The second
portion of our presentation focuses on energetic confirmation of those dynamically
derived results, based upon the equality of the respective interstitial- and suspension-
scale energy dissipation or, equivalently, mechanical work rates for the same overall
Couette or Poiseuille kinematical flow conditions. As shown later, the dynamically
derived vortex and shear viscosity results are used to calculate the suspension-scale
work rate, ẆS , which is then compared with the corresponding interstitial-scale work
rate, ẆI . This scheme is reminiscent of the agreement found between Einstein’s (1956)
original scalar energy dissipation argument calculations underlying his suspension-
scale shear viscosity law, µ = µ0(1 + 2.5φ), and subsequent dynamical confirmations
of this relation by Burgers (1938) and others (e.g. Landau & Lifshitz 1959; Brenner
1970a; Cox & Brenner 1971) using tensorial stress arguments. Although the energetic
and dynamical schemes used in our calculations are not wholly independent, owing to
their derivation from the same set of BEM simulation data, the fact that the ratio of
ẆI to ẆS calculated from these data is shown to be unity (within acceptable statistical
uncertainties) inspires confidence in the validity of the end results, especially when
viewed in the context of the agreement of our results with those of the Prosperetti
et al. group.

Sections 2 and 3 derive the pertinent theoretical relations underlying the respective
dynamical and energetic bases for interpreting the subsequent simulation data
obtained by numerically solving the interstitial creeping flow equations subject to
appropriate boundary conditions. Following this, in § 4, the BEM code used for these
particle-level simulations is briefly described, and the resulting simulation-derived data
summarized in terms of the issue of confirming (1.7) and (1.8) and of interpreting
the shear and vortex viscosity vs. concentration data obtained. Section 5 reviews the
main conclusions of the paper. Finally, an Appendix outlines the arguments behind
our neglect of couple-stress effects.

2. Vortex viscosity
To test the validity of the proposed suspension-scale rheological constitutive

equations (1.7) and (1.8), as well as to establish the respective concentration
dependences of the phenomenological coefficients appearing therein, we consider,
at the interstitial scale, a non-colloidal suspension of identical, net force-free, rigid
spheres of radii a homogeneously dispersed in an incompressible Newtonian liquid
of viscosity µ0, with the fluid subject to appropriate interstitial-scale boundary
conditions imposed at the surfaces of the individual particles and on the boundaries
surrounding the suspension as a whole. In order to represent the structureless nature
of the suspension, hard-sphere random distributions were employed throughout
the simulations. The simulations were performed such that the force-free particles
possessed both translational and angular velocities; however, the individual particle
motions through space were not computed, whence possible complications arising
from the formation of local microstructires were not considered. The effect of
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the suspension-scale external body-couple density G was simulated, numerically, by
requiring each of the individual particles (i =1, 2, . . . , N) to spin with specified angular
velocities Ω i by the application of appropriate couples Gi to each, as detailed below.
Reciprocally, the effect of the suspension-scale external body-couple density field G
could also be simulated by, instead, imposing upon each of the individual particles
(i = 1, 2, . . . , N) specified couples Gi , causing them to spin them at appropriate
angular velocities Ω i . Numerical differences between these alternative schemes were
found to be negligible (Feng 2003). As a result, for brevity, the present paper focuses
exclusively on use only of the former method, namely that of specifying the angular
velocities Ω i .

Each suspended sphere, being force free (so that Fi = 0), necessarily translates with
a velocity U i to be determined as part of the solution scheme. Owing to the no-
slip condition on the spheres, these translational particle motions drag neighbouring
interstitial fluid, thereby creating a suspension-scale velocity field v, representing
the volume average of the local interstitial velocities together with the rigid-body
velocities interior to the spheres. Use of the constitutive equations (1.7) and (1.8) in
conjunction with our knowledge of v and of the suspension-scale spin field Ω (the
latter derived as discussed below from the prescribed Ω i), enables us to calculate
the suspension’s respective relative vortex and shear viscosities, µv/µ0 and µ/µ0, in
terms of φ. At the same time, our demonstration that the same values of µv and µ

arise from independent Couette- and Poiseuille-flow BEM calculations will be seen to
affirm the correctness of the constitutive equations (1.7) and (1.8) for the respective
symmetric and antisymmetric stresses, in addition to offering evidence of the viability
of the phenomenological viscosity data appearing therein.

The linear and angular momentum equations (1.3) and (1.4), without the inertial
terms, must be solved simultaneously with the continuity equation (1.2) in order
to provide suspension-scale continuum interpretations of the above interstitial-scale
volume-averaged simulation results obtained for v. Introduction of (1.7) and (1.8)
into the inertia-free versions of (1.3) and (1.4) yields

−∇p + 2µv∇ × Ω + (µv + µ) ∇2v = 0 (2.1)

and

2µv(∇ × v − 2Ω) + G = 0. (2.2)

Here, G is interpreted as being related to the individually applied external couples Gi

by the expression

G =
1

V

N∑
i=1

Gi =
3φ

4πNa3

N∑
i=1

Gi , (2.3)

where a is the sphere radius and N is the number of particles present in the
interstitial-scale simulation domain of volume V , which represents a periodic cell in
the simulation scheme involving periodic boundary conditions imposed on the fluid
boundaries of V . The above equations are further developed in the remainder of
this section for the two classes of prescribed spin fields described earlier, namely
position-independent in the Couette-flow scheme and linearly position-varying in the
Poiseuille-flow case. The results obtained therefrom are subsequently used to calculate
the suspension-scale velocity field of interest.
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2.1. Position-independent spin field; simple shear flow

Consider a suspension bounded by a pair of no-slip parallel plates situated at y = ±H

and extending indefinitely in the z-direction. At both the interstitial and suspension
scales, the upper plate is taken to be force free, while the lower plate remains at
rest (with all velocities subsequently being measured relative to the lower plate). The
angular velocity Ω i of each of the suspended spheres is chosen to be

Ω i = −δzΩ = const, (2.4)

where the pseudoscalar Ω is a position-independent constant, and δz is a unit vector
in the z-direction, pointing out of the (x, y)-plane. In conjunction with the no-slip,
no-force condition, this causes the upper plate to move in the positive x-direction
with velocity U =2γH , wherein γ = U/2H is the suspension-scale shear rate. The
subsequent BEM interstitial-scale creeping flow calculation of the velocity U of the
freely moving, force-free upper plate thus ultimately serves to link the suspension-
scale shear rate γ directly to: (i) the prescribed position-independent rotation rate Ω

(see below) of the suspended spheres; (ii) the particle volume fraction φ; and (iii) the
shear viscosity µ0 of the interstitial fluid. In turn, this will be seen to enable us to
calculate the suspension’s relative vortex and shear viscosities, µv/µ0 and µ/µ0, as
functions of φ.

Given that the suspension-scale pseudovector Ω is the angular velocity of the
particulate phase, and that each particle comprising that phase rotates with the same
position-independent angular velocity given by the right-hand side of (2.4), it follows
from the latter that the volume-average suspension-scale spin field, Ω = N−1

∑
i Ω

i ,
appearing in (1.8) is given by the expression

Ω = −δzΩ = const. (2.5)

Subject to a posteriori verification, the external couple Gi required to cause the
force-free sphere i to rotate with angular velocity Ω i is assumed to be such that

Gi = −δzG
i = const. (2.6)

Despite the constancy of Ω and the homogeneity of the suspension – the latter
embodied in the relative randomness of the respective positions of the individual
particles – the pseudoscalar Gi will, nevertheless, generally vary slightly in magnitude
from one particle to another depending upon the instantaneous position of particle
i relative to its neighbours in any given simulation. Equations (2.3) and (2.6) furnish
the suspension-scale body-couple density field, G.

Based upon symmetry, we further suppose, subject to a posteriori confirmation, that
the suspension-scale velocity field is both one-dimensional and unidirectional:

v = δxv(y). (2.7)

Note that this field automatically satisfies the continuity equation (1.2). The boundary
conditions v(H ) = U =2γH and v(−H ) = 0 lead, of course, to the simple shear flow

v(y) = γ (y + H ). (2.8)

To relate the constant γ to the particle spin rate Ω , we note as a consequence of
(2.6)–(2.8), together with use of the constitutive equations for the symmetrric and
antisymmetric stresses, that (1.5) adopts the form

T = (δxδy + δyδx)µγ + (δxδy − δyδx)µv(2Ω − γ ). (2.9)
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Obviously, in circumstances where Ω = γ /2, such as would occur in the absence of
couples restraining the particles from rotating freely in a simple shear flow, there
would be no antisymmetric stress.

Subject to a posteriori verification, the suspension-scale pressure is assumed to be
constant throughout the suspension, whence we may take it to be zero without loss
of generality:

p = 0. (2.10)

Accordingly, the suspension’s pressure tensor,

Π = −Ip + T, (2.11)

is identical to its deviatoric stress (2.9) in the present case.
The force dF acting on a directed surface element dS = δy dx dz lying on a plane

y = const is given by the expression dF = dS · Π. As such, the condition that the top
surface, y =H , be force free requires that δy · T = 0 on that surface. From (2.9) this
boundary condition necessitates that µγ − µv(2Ω − γ ) = 0. Equivalently,

γ = 2Ω
µv

µ + µv

. (2.12)

Consequently, it follows from (2.9) that the stress tensor is the position-independent
constant

T = δxδy4Ω
µµv

µ + µv

= const. (2.13)

Note that (2.5), (2.8) and (2.10) together with the preceding constancy of the deviatoric
stress confirms that the linear momentum equation (1.3) is indeed satisfied, with the
pressure being constant throughout the suspension, as in (2.10). As such, our a
posteriori assumptions are seen to be internally consistent.

It follows from (2.13) that

T × = δz4Ω
µµv

µ + µv

. (2.14)

Alternatively, upon using (2.12) to eliminate µ from this relation, this makes
T × = δz2µv(2Ω − γ ) = const. This, in conjunction with (1.4) from which the inertial
terms have been eliminated, gives, upon use of (2.3) and (2.6),

µv =
3φḠ

16πa3(Ω − γ /2)
, (2.15)

where

Ḡ =
1

N

N∑
i=1

Gi (2.16)

denotes the magnitude of the couple exerted on an average particle in the suspension
required to cause a particle to rotate with the specified angular velocity Ω . Similarly
to Ḡ, the effective shear rate γ appearing in (2.15), together jointly governing the value
obtained for µv , would be expected to show small variations from one simulation to
the next.

Operationally, (2.15) enables the vortex viscosity to be calculated from our
subsequent interstitial BEM calculations, since these calculations furnish both Ḡ

and γ for a specified Ω . As a by-product, the relation

µ = µv

(
2Ω

γ
− 1

)
(2.17)
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derived from (2.12) enables the shear viscosity µ to be calculated from these same
simulation data.

2.2. Linearly varying spin field; parabolic flow

This subsection furnishes the suspension-scale equations describing flow within a
circular cylindrical tube of radius R whose force-free particles spin at rates linearly
proportional to their respective distances ri from the cylinder’s z-axis (and about space-
fixed axes to be described). No-slip boundary conditions are applied along the tube
wall, which is at rest (with all velocities subsequently being measured relative to this
wall), and on the particle surfaces. A position-independent suspension-scale pressure
gradient, P = −dp/dz, is also temporarily incorporated into the analysis in order
to compare the flow generated by applying particle couples with the conventional
Poiseuille flow generated by an axial pressure gradient. However, our main goal is to
focus on the flow created exclusively by particle rotation in the absence of externally
applied forces, for which P = 0. Thus, our temporary inclusion of a non-zero P merely
serves as a frame of reference for what is follow. Ultimately, our BEM calculations
are based exclusively upon the case P = 0.

With (δr , δθ , δz) a right-handed system of unit vectors in the circular cylindrical
coordinate system (r, θ, z), the angular velocity of each suspended sphere (i =
1, 2,. . . , N) relative to the tube walls is chosen to be

Ω i = δθ
iΩri/R, (2.18)

with Ω a position-independent constant having the dimensions of a spin rate and δθ
i

the tangential unit vector passing through the centre (ri, θi, zi) of sphere i. Subject to
a posteriori verification, we thus suppose that the suspension-scale spin field is given
by the expression

Ω = δθΩr/R. (2.19)

We further suppose, subject to the same caveat, that the external couple required to
cause the ith particle to rotate with the angular velocity given by (2.18) is

Gi = δθ
iGiri/R, (2.20)

where, as was true of the comparable quantity appearing in the preceding simple shear
flow analysis, during any given simulation the scalar Gi appearing above is expected
to depend weakly upon the radial location ri of particle i. Based upon symmetry,
we further suppose, again subject to subsequent confirmation, that at the suspension
scale, v = δzv(r), which automatically satisfies the continuity equation (1.2).

Equations (2.1) and (2.2) are readily solved subject to the following trio of
requirements: (i) P = const; (ii) v = 0 at r = R; and (iii) v is finite at r = 0. This
yields the Poiseuille-like parabolic velocity field

v = δz2V̄ [1 − (r/R)2], p = −Pz + const, (2.21)

in which V̄ is the mean velocity of flow through the tube, which related to the pressure
gradient by the expression

P =
4

R

[
µ

2V̄

R
− µv

(
Ω − 2V̄

R

)]
. (2.22)

Incidental results related to the present calculation are as follows:

T = δrδz

2r

R

[
µv

(
Ω − 2V̄

R

)
− µ

2V̄

R

]
− δzδr

2r

R

[
µv

(
Ω − 2V̄

R

)
+ µ

2V̄

R

]
(2.23)
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and

T × = −δθ

4µvr

R

(
Ω − 2V̄

R

)
. (2.24)

The deviatoric stress (2.23) satisfies the linear momentum equation (1.3), re-written
in the form δzP + ∇ · T = 0, which is equivalent to the relation ∇ · Π = 0, with the
pressure tensor defined in (2.11).

Several things are noteworthy about this Poiseuille-flow solution. First, Ω = 2V̄ /R

when the particle phase rotates freely with half the local vorticity of the fluid phase, as
in the case of conventional Poiseuille flow. In such circumstances it follows from either
(2.24) or (2.23) that the antisymmetric stress vanishes, and that the pressure gradient
(2.22) reduces to the conventional Poiseuille’s law relation, P = 8µV̄ /R2. On the other
hand, as earlier discussed, we are interested in the case where there is no suspension-
scale pressure gradient, i.e. P = 0. In that case it follows from (2.22) that the mean
velocity through the cylinder, generated exclusively by rotation of the spheres, is

V̄ =
1

2
ΩR

µv

µ + µv

, (2.25)

which represents the analogue of the Couette-flow relation, (2.12). With the use of
the above expression, (2.24) in conjunction with the relation Tx + G = 0 gives, for the
local body-couple density at a point of the suspension,

G = δθ

4µµvΩr

(µ + µv)R
. (2.26)

In addition, (2.23) becomes

T = −δzδr

4µµvΩr

(µ + µv)R
, (2.27)

analogous to (2.13). In regard to forces and couples in the present P = 0 case, we
note from (2.27) that, among other things, no traction exists at any point on the
tube walls, since with dSr = δrR dθ dz a directed element of surface area on the
walls, r = R, it follows that dSr · Π = 0. Thus, remarkably, despite the usual velocity
gradient existing at the no-slip walls of the parabolic flow field, (2.21) (with P = 0),
there is no force or normal stress at any point on the walls. On the other hand, on
the two end caps of the cylinder, whereon dSz = ± δzr dr dθ , there is, locally, at each

point thereon a non-zero force, dSz · Π �= 0. Since, however,
∫ 2π

0
δr dθ = 0, no net

force acts on either end. (We note parenthetically that despite the existence of the
local body-couple density field, G, the total couple exerted upon the contents of the
suspension as a whole is zero, since

∫
V

G dV (with dV = rdr dθ dz a volume element)
integrates to zero. While this is true for the present case of Poiseuille flow in a tube,
it would not be true, say, for the comparable case of two-dimensional Poiseuille flow
between flat plates, where the axes of rotation of the spheres would all lie in the
z-direction, perpendicular to the (x, y) net-flow plane.)

With regard to use of the preceding suspension-scale Poiseuille formulas in
interpreting our subsequent BEM simulation calculations, we note that use of (2.2)
together with (2.3), (2.20) and (2.24) gives

µv =
3φḠ

16πa3(Ω − 2V̄ /R)
, (2.28)

where

Ḡ =
1

N

N∑
i=1

(ri

r

)
Gi (2.29)
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denotes the average value of the weakly varying quantity Gi . Were Gi in the
subsequent simulations indeed found to be sensibly independent of the position of ri ,
at least to the extent that ri/r could, in effect, be removed from beneath the summation
sign without significant error, it would then follow (from the fact that

∑N

i =1(ri/r) = N ,
at least statistically in our disordered suspensions), that Ḡ would be equal to Gi . Of
course, this position-independence of Gi will not prove to be exactly true, with the
degree of departure from constancy depending upon the position of sphere i relative to
its neighbours in any given simulation of the randomly ordered particle arrangement.
As such, from a computational point of view, all other things being equal, small
variations in the value of Ḡ will occur from one simulation to the next. Similarly,
the quantity V̄ , obtained by appropriately volume averaging the interstitial-scale
creeping flow velocity, v(r, θ, z), would be expected to show small variations from one
simulation to the next, analogous to those discussed in the simple shear case.

Similarly to (2.17), on the basis of (2.25) rewritten as

µ = µv

(
ΩR

2V̄
− 1

)
, (2.30)

one can obtain numerical values of the shear viscosity from the same parabolic flow
simulation data as were used to calculate the vortex viscosity.

3. Energy dissipation
Energetically speaking, in the case of incompressible inertia-free linear and angular

momentum transport, all of the work being done by the external couples exerted upon
the fluid is dissipated. In steady-state isothermal systems this is manifested by the
conversion of work into heat, which flows out of the system into the surroundings.
With ẆS the temporal rate at which suspension-scale work is being done on the
contents of a domain of volume V , we have in the absence of external body forces
and couple stresses, but in the presence of external body couples, that (Brenner &
Nadim 1996; Rinaldi & Brenner 2002) ẆS =

∮
∂V

dS · Π · v+
∫

V
G · Ω dV , with ∂V the

closed surface bounding V . Use of the fact that ∇ · Π = 0 and ∇ · v =0 together with
(1.5) and some obvious identities leads eventually to the relation

ẆS =

∫
V

T s: (∇v)s dV +

∫
V

Ta: (∇v)a dV +

∫
V

G · Ω dV,

where the superscripts s and a refer to the respective symmetric and antisymmetric
portions of the dyadic to which they are affixed. The integrand of the second term can
be re-expressed as Ta: (∇v)a =(1/2)T × · (∇ × v). Together with the inertia-free form
of (1.3), we thus obtain

ẆS = 1
2

∫
V

T s: [∇v + (∇v)†] dV +

∫
V

T × ·
[

1
2
(∇ × v) − Ω

]
dV.

Finally, this when combined with the suspension-scale constitutive equations (1.7) is
and (1.8) gives

ẆS =
1

2µ

∫
V

T s: T s dV +
1

4µv

∫
V

T × · T × dV (3.1)

for the suspension-scale rate of working, ẆS (Feng 2003). The corresponding
interstitial-scale work rate effected by the couples acting upon the individual spheres,
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say ẆI , is, in the present case, where no work is done either at the material boundaries
or at the ends of the domain V (Feng 2003),

ẆI =

N∑
i=1

Gi · Ω i . (3.2)

This is, of course, the interstitial-scale analogue of the suspension-scale relation
ẆS =

∫
V

G · Ω dV from which (3.1) was derived
In the simple shear flow case treated in § 2.1, it follows upon introducing (2.9) into

(3.1) that

ẆS

V
= µγ 2

[
1 +

µv

µ

(
2Ω

γ
− 1

)2
]

, (3.3)

where V =
∫

V
dV is the volume of the domain. Equation (2.17) may be used to

eliminate either µ or µv from this expression, so as to express the work rate entirely
in terms of either one of these two suspension-scale viscosities. Equation (3.3) shows,
as was to be expected, that in circumstances where the spin rate matches half
the suspension-scale vorticity, corresponding to the situation where Ω = γ /2, no
dissipation ensues from the spin since this circumstance corresponds to the case
where the suspended particles rotate freely, unconstrained by the action of couples.
Were this to be the case, for a given shear rate γ , albeit now furnished by applying
forces to the plates rather than by applying couples to the particles, the rate of
working per unit volume would be µγ 2. Thus, all other things being equal, if ẇG and
ẇF represent the rates of working per unit volume required to achieve a given shear
rate γ by respectively applying couples to the spheres or forces to the plates, one has
upon using (2.12) that

ẇG

ẇF

= 1 +
µ

µv

. (3.4)

As this work-rate ratio is greater than unity, applying couples to create a specified
simple shear flow at rate γ is clearly less energy efficient than applying forces. By
way of example, in dilute systems (Brenner 1970a, b), where µv/µ0 → 1.5φ as φ → 0,
equation (3.4) asymptotes to ẇG/ẇF → 0.667/φ, thus becoming extremely large at
low particle concentrations.

In the parabolic flow case treated in § 2.2, where the volume element for a length
L of tube is dV = 2πLr dr , one finds from (2.23) upon performing the requisite
integration of (3.1) that

ẆS

V
=

8µV̄ 2

R2

[
1 +

µv

µ

(
ΩR

2V̄
− 1

)2
]

. (3.5)

Analogously to the preceding simple shear case, (2.30) may be used to eliminate either
µ or µv from this expression. Moreover, when the particles rotate freely, corresponding
to Ω = 2V̄ /R, there is again no dissipation resulting from the spin. This freely rotating
sphere case corresponds to the classical situation of a purely pressure-driven Poiseuille
flow animated by the application of external forces, for which the rate of working
per unit volume of duct, say ẇF , is given by the expression ẇF = 8µV̄ 2/R2. On the
other hand, in the absence of an externally imposed pressure gradient P , where the
mean flow V̄ is driven exclusively by the particle rotations, and for which case Ω is
related to V̄ by (2.25), it follows from (3.5) that the corresponding per-unit-volume
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couple-driven work rate, say ẇG, is ẇG = 8V̄ 2µ[1 + (µ/µv)]. For a given flow rate V̄

it thus follows upon use of (2.25) that

ẇG

ẇF

= 1 +
µ

µv

. (3.6)

Again, as in the previous simple shear flow case, couple-driven flow is seen to be less
energy efficient than is its force-driven counterpart.

As the suspension-scale velocity field is presumably accurately simulated by its
volume-averaged interstitial velocity counterpart, it follows in the simple shear flow
case for specified rotation and shear rates, Ω and γ , common to both scales of
description, that the respective rates of working must be the same in order that
the laws of thermodynamics be obeyed independently of the scale at which the
phenomenon is being viewed. As such, by equating ẆI to ẆS , it should be possible to
calculate both µv and µ via this energetic scale-invariance scheme. In turn, the values
of µv and µ derived by this energetic scheme should be identical to those derived by
the dynamical scheme outlined in § 2. Reciprocally, the ratio of ẆS (calculated by using
the dynamically derived µv and µ values) to ẆI should be unity, at least to within the
accuracy of the calculations. This will be seen to be the case (cf. figure 7). Of course,
since the same simulation data set is used in both schemes, the respective dynamic and
energetic calculations cannot be regarded as wholly independent. Nevertheless, such
internal consistency should inspire confidence in the final conclusions regarding the
validity of the constitutive equations (1.7) and (1.8), as well as in the values obtained
for the respective vortex and shear viscosities. These arguments apply, of course, to
both the Couette- and Poiseuille-flow cases.

4. Numerical simulation
4.1. Boundary blement method overview

BEM simulations (Brebbia, Telles & Wrobel 1984) were used in this study to model
the creeping flow of suspensions of uniform, force-free spheres randomly dispersed
in Newtonian liquids and subjected to couples chosen so as to cause each sphere to
rotate with a predetermined angular velocity. A detailed description of the general
BEM scheme can be found elsewhere (Ingber 1989; Mondy, Ingber & Dingman
1991; Dingman 1992). The basic feature of the method is that the (closed) domain of
interest, V , needs to be discretized into elements only on its boundaries, ∂V . Explicitly,
the BEM scheme is such that the requisite numerical solution of the differential
equations governing the particular problem posed, and satisfying prescribed boundary
conditions, can ultimately be obtained throughout the entire domain by the expedient
of initially having to solve for the pertinent unknowns or parameters (e.g. velocity
or stress) only on the domain’s boundaries. Since no nodes exist in the interior of
the domain during this portion of the overall calculation, the number of unknowns
that need to be solved for simultaneously is significantly reduced compared to the
number required in other solution schemes. Having established the values of the
nodal parameters on the boundaries, the solution throughout the domain’s interior
can then be achieved by using the differential equations governing the phenomena to
derive simple algebraic expressions relating the respective values of the parameters at
the interior nodes to those at the boundaries.

Until otherwise stated, all equations and symbols appearing below in this sec-
tion refer to interstitial-level fields. At each point in the interstices, incompressible
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quasi-static Stokes flow obeys the following differential equations:

∇ · v = 0, (4.1)

∇ · Π = 0, (4.2)

with Π the interstitial pressure tensor,

Π = −Ip + µ0[∇v + (∇v)†]. (4.3)

The boundaries ∂V of the fluid domain V can be decomposed as follows:

S = Sf +

N∑
i=1

Si, (4.4)

where Sf represents the fixed boundaries of V , and Si the surface of the ith
particle.

Equations (4.1)–(4.3) can be cast into integral form by using a weighted residual
form of these equations with weighting functions given by the fundamental solution
of the Stokes equations. In Cartesian tensor notation, the Stokes velocity field vk at
a point x of the fluid which is generated by the presence of a point force of strength
Fl situated at y is given by the expression vk = v�

klFl , wherein (cf. Mondy et al. 1991;
Kim & Karrila 1991)

v�
kl(x, y) =

1

8µ0πr
(δkl + r,kr,l), (4.5)

in which δkl is the Kronecker function and r = x − y is the vector displacement
between the field point x and the source point y. Moreover, r = |r | is the separation
between these two points.

The resulting boundary integral equation (BIE), obtained by use of the Lorentz
reciprocal theorem (Happel & Brenner 1965), is

clj (x)vj (x) +

∫
S

q�
jkl(x, y)vk( y)nj ( y) dS = −

∫
S

v�
lj (x, y)tj ( y) dS, (4.6)

where t = n · Π is the traction along the surface S, n is the unit outward normal vector
to the boundary S, and

q�
jkl(x, y) = − 3

4π

r,j r,kr,l

r2
. (4.7)

The coefficient tensor clj can be determined from the geometry or by integrating q�
jkl

over S (Dingman 1992).
Owing to the no-slip boundary condition, the velocity at a point x on the surface

of sphere i can be related to the sphere’s angular velocity Ω i and to the velocity U i

at the centre xi of the sphere by the expression

v = U i + Ω i × (x − xi) on Si. (4.8)

The surface Si of each of the spheres is discretized into NE triangular and quadrilateral
boundary elements. For the super-parametric treatment used in this study, the
velocities and stresses are assumed constant within each element, whereas quadratic
shape (Dingman 1992) functions are used to define the surface geometry. The
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discretized equation for the nth element takes the following form:

c
(n)
lj (x)v(n)

j (x) +

NE∑
(n)=1

∫
(n)

N (n)( y)q�
jkl(x, y)v(n)

k ( y)n(n)
j ( y) dS(n)

= −
NE∑

(n)=1

∫
(n)

N (n)( y)v�
lj (x, y)t (n)

j ( y) dS(n). (4.9)

The superscript (n) appearing above refers to the value on the nth element of
the quantity to which it is affixed whereas N (n)( y) is the shape function, while
NE represents the total number of elements lying on all of the surfaces of the
spheres.

The resulting algebraic system of equations is closed by enforcing the specified
force Fi and couple Gi on each of the spheres. Explicitly, for each sphere Si in the
suspension we require that ∫

Si

t dS = 0, (4.10)∫
Si

(x − xi) × t dS + Gi = 0. (4.11)

In this scheme the fundamental singular solutions of the governing differential
equations are continuously distributed over the boundaries of the system, whence the
preceding boundary conditions lead to integral equations for the density distributions
of these fundamental solutions. In addition to reducing the dimensionality of the
problem posed, the method is particularly attractive in the case of Stokes-flow
problems, since it represents a very general approach, independent of the body
geometry as well as the form of the external flow field (Dingman 1992). A closed-
form solution of the resulting integral equation is, in general, not possible, thus
requiring a numerical solution.

4.2. Numerical experiments and results

The simulations were carried out using a BEM code (Dingman 1992) developed with
the numerical algorithm described in the preceding subsection. The three-dimensional
element meshes for the spheres and cylindrical container used in the Poiseuille-flow
case are shown in figure 1, which depicts a periodic cell of radius R and length 4R

containing 160 spheres. Not shown is the comparable figure for the Couette-flow case
involving a cube of side 2H , also containing 160 spheres. In order to simulate the
unboundedness of the suspension in one or more directions, where required, periodic
boundary conditions were applied, namely in the x- and z-directions in the parallel
plate case, and in the z-direction in the circular tube case. In each case the spheres were
placed randomly in the bounded cell, and the results for that particular configuration
determined. The suspension-scale properties for each concentration φ were eventually
obtained by averaging 30 such configurations. Spot-checking the results by use of a
two-sided Student t-test (Johnson 1965) showed that no statistical difference existed
between any two sets of the 30-configuration average. (Where shown explicitly on
subsequent figures, the indicated error bars were calculated on the basis of this t-test.)
Machine limitations set 160 as the maximum possible number of particles allowable
in our simulations. As such, φ was varied by changing the sphere radius in the
respective fixed-size parallel plate and cylindrical cells, while keeping the number of
particles fixed at 160.
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z

yx

Figure 1. A three-dimensional BEM mesh of spherical particles in a tube of radius R and
length 4R for the case φ = 0.10. The front wall mesh has been cut away in order to view the
particles clearly. There are 160 particles in this simulation, with 48 elements on each sphere.
Moreover, there are 1600 elements on the cylinder boundaries. The figure was generated via a
T ecplotTM that uses lines to connect the nodes. Our simulation used super-parametric elements
with quadratic curves to connect the nodes. In order to smooth the geometry of the ball, which
is more representative of the actual geometry in our simulation, a 200-element ball mesh was
used in drawing this figure.

In both classes of flows, in addition to the prescribed angular velocities Ω i on
each sphere and the periodic boundary conditions, no-slip boundary conditions were
applied at the surfaces of both the particles and walls, while the spheres were rendered
net force free. In the shear flow case the lower plate was maintained at rest, while
the upper plate was rendered force free at each point, thus allowing it to move with
a velocity U determined by the no-slip condition maintained thereon. (The local
force-free condition on the upper plate automatically rendered the entire lower plate
net-force free.) In the Poiseuille flow case, a no-slip condition was imposed at each
point on the cylinder walls, with all velocities being measured relative to these walls.
At the same time, a condition of no net force was imposed on the two end caps, thus
ensuring that no net force acted on the cylinder walls, in turn ensuring satisfaction
of the suspension-scale condition P = 0.

An elementary benchmark test of the general BEM scheme involved comparing the
BEM-calculated couple G required to cause a single sphere to rotate with an angular



114 S. Feng, A. L. Graham, J. R. Abbott and H. Brenner

10–1

10–2

10–3

10–4

100 101 102 103

Fr
ac

ti
on

al
 e

rr
or

Unbounded

Number of elements on a sphere

Bounded

Figure 2. Fractional error, |G − G�| /G�, in the couple G on a rotating sphere relative to
the theoretical Kirchhoff’s law couple, G�. Results are shown for the respective cases of a
single particle rotating in an unbounded fluid and at the centre of a cylindrical tube of radius
R = 10a. In the latter bounded case, 1600 elements were used on the cylinder boundaries.
The number of elements on the sphere varied from 48 to 1800. Note that the effect of the
cylindrical boundary upon the couple is less than 0.1 %.

velocity Ω in the effectively unbounded interstitial fluid, otherwise at rest, against
Kirchhoff’s theoretical value (Happel & Brenner 1965), G� = 8πµ0a

3Ω . Figure 2
shows that the calculations converged monotonically with increasing mesh density on
the sphere. Explicitly, a less than 1% error in the ratio |G − G�| /G� resulted from
use of 50 mesh elements on the sphere (and 720 elements on the cylinder walls),
with 50 being the number of elements later used for each sphere in the multi-sphere
simulations of the suspension. Detailed calculations (Feng 2003) revealed that with 48
meshes on each sphere the accuracy of the BEM scheme would prove satisfactory as
long as the gap between neighbouring particles was greater than 0.1a. This restriction
places an upper limit of φmax = 0.50 on the maximum allowable concentration in the
case where the spheres are uniformly distant from each other. However, since this
uniform spacing condition is not met in random arrangements, we limited ourselves
to the concentration range 0 � φ � 0.30, for which the differences in the simulation
results were found to be small at the highest concentration (Feng 2003).

According to the simple shear flow analysis outlined in § 2.1, applying couples
to the individual spheres presumably generates the suspension-scale linear velocity
profile v =U (y + H )/2H . By presumably we mean to the extent that the constitutive
equations (1.7) and (1.8) are valid. As shown in figure 3, numerical simulation agrees
well with theoretical predictions as regards the expected linearity of the suspension-
scale velocity profile, which represents the local volume average of the interstitial
velocity field. Thus, the simulation implicitly supports the constitutive hypotheses
entering into the analysis. In the comparable Poiseuille-like parabolic velocity field
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Figure 3. Local volume-average velocity field for the Couette-flow case generated by
position-independent spins of the spheres bounded by two parallel plates. The result averaged
over 30 configurations of 60 particles at φ = 0.22 is shown. If the suspension-scale constitutive
equations (1.6) and (1.7) are correct, the hypothetical velocity field would be represented by a
straight line connecting the end points. The slight deviation from linearity seen near these two
end points is presumably a manifestation of wall effects on those spheres nearest to the two
plates.
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Figure 4. Local volume-average velocity field for the Poiseuille-flow case generated by linearly
varying spin rates of the spheres within a circular cylindrical tube. No pressure gradient has
been applied to the suspension. Results are shown for one configuration at φ = 0.22 using
160 particles. The curve shows the parabolic velocity profile that would be expected were the
constitutive equations (1.6) and (1.7) obeyed.

case, figure 4 further confirms the agreement of our numerical simulation scheme
with expectations based upon these same constitutive hypotheses.

As shown in figure 5, BEM calculations of the suspension’s vortex viscosity based
upon both the Couette and Poiseuille flow experiments agree with the theoretical
prediction for dilute suspensions, namely µv/µ0 = 1.5φ (Brenner 1970a, b). Moreover,
in concentrated suspensions these simulation results are also seen to agree excellently
with the independent Green’s function simulation of Prosperetti et al., according to
which µv/µ0 = 1.5φ/Ω(φ), where in their notation Ω(φ) is the rotational hindrance
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Figure 5. Relative vortex viscosity µv/µ0 vs. volume fraction φ of suspended spheres obtained
from both the Couette- and Poiseuille-flow simulations. The solid line shows the limiting
theoretical slope, namely 1.5φ in dilute suspensions. Also shown are the Prosperetti et al.
results.

5

4

3

2

1
0 0.1 0.2

φ

0.3

µ
µ0
–––

BEM (Poiseuille)
BEM (Couette)

Gadala-Maria (1979)
Slerou & Brady (2002)
Ladd (1990)
Thomas low (1965)
Thomas high (1965)

Prosperetti et al.

Figure 6. Relative shear viscosity µ/µ0 vs. volume fraction φ of suspended spheres obtained
from both the Couette- and Poiseuille-flow simulations. Comparison is made with experimental
data as well as with the simulation results of others.

function, representing the concentration-dependent correction of the dilute suspension
formula. Its functional dependence upon φ is presented graphically by those authors
up to φ = 0.5, as well as by the empirical curve-fitting formula Ω(φ) = (1 − φ)1.5−0.41φ ,
represented by the dotted line in figure 5.

Having determined the vortex viscosity as outlined above, the corresponding shear
viscosity ratio µ/µ0 vs. φ was readily determined from these same BEM data via use
of (2.17) in the parallel plate case and (2.30) in the circular tube case. These shear
viscosity results are presented in figure 6, again for both Couette and Poiseuille flow
kinematics. Also shown for comparison are the (lower and upper bound) experimental
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Figure 7. Comparison of the respective rate of working (ẆI ) at the interstitial scale to that
(ẆS) at the suspension scale as a function of particle concentration φ for both the Couette-
and Poiseuille-flow simulations.

data of Thomas (1965) and the data of Gadala-Maria (1979) as well as the simulation
results of a number of other investigators, including Prosperetti et al. Obviously, all
of these latter simulation results are reasonably consistent with one another as well
as with experiment over the entire concentration range displayed. The only issue
worthy of more detailed comment is that our Poiseuille flow results were consistently
lower than our Couette flow results at the higher concentrations. This appears to be
a fundamental shortcoming of the BEM simulation scheme at concentrations above
about 25%, where close-contact singularities necessarily become more probable when
randomly placing the spheres in the simulation cell. In such circumstances, the simple
shear results are more likely to be accurate than the parabolic flow results, since in
the former case the close-contact singularity varies like ln(1/r), whereas it varies like
1/r in the latter case, a more severe variation.

As discussed in § 3, scalar energetic arguments may be used in place of the tensor-
valued dynamical arguments of § 2 to confirm the validity of (1.7) and (1.8), as well as
the correctness of the values of µ and µv at the various sphere concentrations. Figure 7
compares the interstitial-scale rate of working ẆI , obtained using the simulation data
to effect the summation of (3.2), with the corresponding suspension-scale energy
dissipation rate ẆS derived from (3.1) (as explicitly set forth in (3.3) and (3.5)) by
using the dynamically derived µ and µv values. That these two independent work-
rate calculations agree within acceptable statistical uncertainties, as shown in figure 7,
offers evidence of the consistency of our discrete interstitial-scale simulation results
with those stemming from our suspension-scale continuum theory analysis. In turn,
this agreement further affirms the likely correctness of the constitutive equations (1.7)
and (1.8), as well as of the respective vortex and shear viscosity values reported here.

5. Summary and conclusions
Based upon use of BEM simulations, our analysis supports the correctness of the

constitutive equation (1.8) for the antisymmetric stress in incompressible suspensions
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of randomly dispersed, non-colloidal, force-free spherical particles. As an incidental
by-product, for this same class of suspensions our results reaffirm the applicability
of Newton’s constitutive law, (1.7), for the symmetric portion of the deviatoric
stress. During the course of confirming these two constitutive relations, numerical
data have been obtained for the respective phenomenological coefficients appearing
therein, furnishing information on the dependence of the suspension’s vortex and
shear viscosities upon the fractional volumetric concentration φ of suspended
particles, covering the range 0 � φ � 0.30. In the dilute region, these simulation-
derived viscosity-concentration results for the suspension’s vortex viscosity agreed
well with theoretical expectations (Brenner 1970a, b). At the higher concentrations
our calculations agreed excellently with those of Prosperetti et al. On the other
hand, the calculated concentration dependence of the shear viscosity in non-dilute
suspensions was found in the Poiseuille flow case to differ slightly from the comparable
simulation results of others – all based upon simple shear flow – as well as from our
own simple shear simulation calculations. A possible limitation of the BEM scheme
in concentrated suspensions was suggested as the source of the disparity.

Apart from this, the functional dependence on particle concentration found for both
the vortex and shear viscosities proved to be sensibly independent of the particular
kinematical flow scheme adopted for their respective computations, whether based
upon Couette- or Poiseuille-like velocity fields. Moreover, the excellent agreement
obtained between the respective suspension- and interstitial-scale work rates, ẆS and
ẆI , offers strong evidence of the validity of the constitutive equations (1.7) and (1.8),
as well as of the correctness of the values obtained for the vortex and shear viscosities.

Our theoretical generation of suspension-scale fluid motion by the use of externally
imposed body couples to create individual particle rotations is similar to that occurring
in practice in the case of ferrofluids (Rosensweig 1997, 2003), where such couples
arise from the action of rotating magnetic fields on suspensions of permanently
magnetized particles. Thus, our theoretical calculations of the vortex viscosity may
prove useful in interpreting magnetic fluid experiments. In this ferrofluid context, our
demonstration in the Appendix that spin-viscosity effects (cf. (A 3)) associated with
couple stresses contribute negligibly to the antisymmetric stresses when compared
with vortex viscosity contributions suggests the need for caution in attempting to
invoke couple stresses when rationalizing experimental magnetic fluid phenomena
(Rosensweig 1997, 2003; Rinaldi & Zahn 2002). In this couple-stress context, the long-
standing (and as yet unresolved) question of whether the spin boundary condition on
solid surfaces should be one of no-slip of the spin field relative to half the vorticity,
or otherwise, becomes moot in circumstances where the couple stress vanishes. This is
a consequence of the fact that the order of the partial differential equations involving
the velocity field (and, hence, the number and type of boundary conditions that need
to be specified in order that the velocity and spin fields each be unique) depends
upon whether couple stresses are, or are not, present. When absent, as in present
circumstances, it is unnecessary to specify suspension-scale spin boundary conditions
on solid surfaces.
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Appendix. Proof of the vanishing of the couple-stress contribution
In order that a suspension qualify as a continuum, it must satisfy the inequality

l/L � 1, where L is the length scale on which the velocity field varies and l = O(a/φ1/3)
is the mean distance between the centres of the suspended spheres, whose radius is a.
Typically, the characteristic length L denotes some linear dimension of the apparatus
through which the suspension flows, namely 2H in our Couette flow case or R in
the Poiseuille flow case. Since a � l/2, it follows, irrespective of the value of φ, that
qualification as a continuum requires that

ε ≡ a

L
� 1, (A 1)

an obviously necessary requirement.
When couple stresses are included in the analysis, the angular momentum equation

(1.4) is replaced by the expression (Condiff & Dahler 1964)

ρκ2 DΩ

Dt
= ∇ · C + T × + G, (A 2)

whereas (1.3) remains unchanged. By analogy with the comparable Newtonian fluid
constitutive equation (1.7) for the symmetric portion of the deviatoric stress (including
dilatation), Condiff & Dahler (1964) proposed the following constitutive equation for
the couple stress (which they supposed to be symmetric):

C = µs

[
∇Ω + (∇Ω)† − 2

3
I∇ · Ω)

]
+ µ′

s I∇ · Ω, (A 3)

in which µs is the spin viscosity and µ′
s the corresponding bulk spin viscosity. Note

for both the Couette and Poiseuille flows treated in the present paper that ∇ · Ω = 0,
so that the issue of the bulk spin viscosity becomes moot.

Each of these spin-viscosity coefficients is assumed to be a amaterial property of the
suspension, and hence a composite property dependent upon the respective material
properties of the interstitial fluid and suspended spheres, with the latter assumed in
our analysis to interact only hydrodynamically (but not, say, through the mechanism
of interparticle colloidal forces, which would introduce additional parameters into the
subsequent dimensional analysis). As such, on dimensional grounds, µs must be of
the functional form

µs = a2µ0f (φ) (A 4)

independently of the density ρ, the only other intrinsic material property upon which
it would appear that µs could possibly depend. A similar expression applies for µ′

s .
Here, fs(φ) and f ′

s (φ) are non-dimensional functions of φ, which functions we suppose
to be of O(1) for all of the particle concentrations studied in this paper. (In dilute
systems, f must certainly go to a zero with φ, since at φ = 0 the suspension’s properties
must reduce to those of the interstitial Newtonian fluid, whose state of stress is purely
symmetric.) The spin viscosity appearing in (A 4) differs in its dimensions from both
the suspension’s shear and vortex viscosities, µ and µv , which are each necessarily
of the respective forms µ0f (φ) and µ0fv(φ), thereby lacking the particle-size a2 term
characterizing the respective spin viscosities. It is this difference which will be seen
to account for the failure of the couple stress C to contribute to the physics of the
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present class of flow problems relative to the viscous contributions embodied in the
deviatoric stress T.

In addition to L, a, µ0 and φ, for a given inertia-free interstitial creeping flow the
only other independent characteristic suspension-scale parameter serving to determine
the scaling of the various fields arising in our force- and pressure-gradient-free, no-slip
analysis is the characteristic angular velocity Ω of the suspended spheres. It is the
existence of this quantity alone that gives rise to the fluid motion, thus causing the
velocity, pressure, stresses, forces and couples to be other than zero in our present
class of problems. Thus, each of these suspension-scale continuum quantities must
necessarily vanish with Ω , and hence each must be directly proportional to Ω as a
consequence of the linearity of the creeping flow equations and the homogeneity of
the no-slip, no-force, interstitial boundary conditions. Accordingly, we introduce the
following scales for these several fields, in which the variables with a caret represent
non-dimensional and scaled, O(1), variables at the suspension scale (from which we
have omitted possible multiples involving functions of φ):

∇ = L−1∇̂, Ω = ΩΩ̂, v = ΩLv̂, (T s, Ta) = µ0Ω(T̂ s, T̂a),

p = µ0Ωp̂, C = a2L−1µ0ΩĈ, κ = aκ̂, t = ω−1 t̂ .

}
(A 5)

Introduce these non-dimensional quantities into (1.3) and (A 2), and define the
suspension-scale Reynolds number Re =ΩL2ρ/µ0 as well as the scaled material

derivative, D/Dt = ΩD̂/D̂t̂ , so as to obtain the following scaled linear and angular
momentum equations:

Re
D̂v̂

D̂t̂
= −∇̂p̂ + ∇̂ · T̂ s − 1

2
∇̂ × T̂ × (A 6)

and

εReκ̂2 D̂Ω̂

D̂t̂
= ε∇̂ · Ĉ + T̂ × + Ĝ. (A 7)

In the continuum limit, namely where ε → 0, it follows that the angular momentum
equation (A 7) reverts to the (dimensional) couple-stress-free and inertia-free form,
T × + G = 0, of (1.4). Moreover, it does so independently of the magnitude of the
Reynolds number, in contrast to the comparable behaviour of the inertia term in the
linear momentum equation (A 6) and, hence, (1.3).

The preceding purely theoretical arguments regarding the vanishing of the couple
stress C are reinforced by our detailed simulation computations for the present class
of problems. Thus, if (A 2) and (A 3) were used instead of (1.4) (without the inertial
terms), the suspension-scale rate of working ẆS given by (3.1) would then adopt the
form (Brenner & Nadim 1996, Feng 2003)

ẆS =
1

2µ

∫
V

T s: T s dV +
1

4µv

∫
V

T × · T × dV +
1

2µs

∫
V

C: C dV. (A 8)

However, the interstitial-scale formula (3.2) for the work rate ẆI would not change.
Consequently, (3.5) for the rate of working in the Poiseuille-flow case would become
(Feng 2003)

Ẇs

V
=

8µV̄ 2

R2

[
1 +

µv

µ

(
ΩR

2V̄
− 1

)2

+
µs

4µ

(
Ω

V̄

)2
]

. (A 9)



Antisymmetric stresses in suspensions: vortex viscosity and energy dissipation 121

As such, the presence in (A 9) of any value of µs measurably different from zero,
stemming from our numerical simulation, would result in a ratio of ẆI to ẆS

calculated by use of (3.5) differing from unity in figure 7. The fact that our simulations
yielded ẆI /ẆS � 1 thus provides strong confirmation that, for the class of problems
studied in this paper, couple stresses do not contribute to suspension-scale continuum
phenomena.

REFERENCES

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41,
545–570.

Brebbia, C. A., Telles, J. C. F. & Wrobel, L. C. 1984 Boundary Element Techniques. Springer.

Brenner, H. 1958 Dissipation of energy due to solid particles suspended in a viscous liquid. Phys.
Fluids 1, 338–346.

Brenner, H. 1970a Rheology of a dilute suspension of dipolar spherical particles in an external
field. J. Colloid Interface Sci. 32, 141–158.

Brenner, H. 1970b Rheology of two-phase systems. Annu. Rev. Fluid Mech. 2, 137–176.

Brenner, H. 1984 Antisymmetric stresses induced by the rigid-body rotation of dipolar suspen-
sions – Vortex flow. Intl J. Engng Sci. 22, 645–682.

Brenner, H. & Nadim, A. 1996 The Lorentz reciprocal theorem for micropolar fluids. J. Engng
Maths 30, 169–176.

Brenner, H. & Weissman, M. H. 1972 Rheology of a dilute suspension of dipolar spherical particles
in an external field: II. Effects of rotary Brownian motion. J. Colloid Interface Sci. 41, 499–531
(l972).

Burgers, J. M. 1938 Second Report on Viscosity and Plasticity. Verh. KNAW Afd. Natuuurkunde.

Condiff, D. W. & Dahler, J. S. 1964 Fluid mechanical aspects of antisymmetric stress. Phys. Fluids
69, 842–854.

Cox, R. G. & Brenner, H. 1971 The rheology of a suspension in a Newtonian fluid. Chem. Engng
Sci. 26, 65–93.

Dahler, J. S. & Scriven, L. E. 1961 Angular momentum of continua. Nature 192, 36–37.

Dingman, S. E. 1992 Three-dimensional simulation of fluid-particle interactions using the boundary
element method. PhD thesis, University of New Mexico.

Drazer, G., Koplik, J., Khusid, B. & Acrivos, A. 2004 Fluid mechanical aspects of antisymmetric
stress. Microstructure and velocity fluctuations in sheared suspensions. J. Fluid Mech. 511,
237–263.

Einstein, A. 1956 Investigations on the Theory of the Brownian Movement. Dover.

Falade, A. & Brenner, H. 1988 First-order curvature effects upon the Stokes resistance of a
spherical particle moving in close proximity to a solid wall. J. Fluid Mech. 193, 533–568.

Feng, S. 2003 Coupling of linear and angular momentum in concentrated suspensions of spheres.
PhD thesis, Texas Tech University.

Gadala-Maria, F. 1979 The rheology of concentrated suspensions. PhD thesis, Stanford University.

Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a
plane wall. Part II. Couette. Chem. Engng Sci. 22, 653–660.

de Groot, S. & Mazur, P. 1962 Non-equilibrium Thermodynamics. Interscience.

Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.

Ichicki, K. & Prosperetti, A. 1994 Faxen-like relations for a nonuniform suspension. Phys. Fluids
16, 2483–2497.

Ingber, M. S. 1989 Numerical simulation of the hydrodynamic interaction between a sedimenting
particle and a neutrally buoyant particle. Intl J. Numer. Meth. Fluids 9, 263–273.

Johnson, R. A. 1965 Probability and Statistics for Engineers. Prentice Hall.

Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications.
Butterworth-Heinemann.

Ladd, A. J. C. 1990 Hydrodynamic transport coefficients of random dispersions of hard spheres.
J. Chem. Phys. 93, 3484–3494.



122 S. Feng, A. L. Graham, J. R. Abbott and H. Brenner

Landau, L. D. & Lifschitz, E. M. 1959 Fluid Mechanics. Oxford.

Marchioro, M., Tanksley, M. & Prosperetti, A. 2000 Flow of spatially non-uniform suspensions –
Part I: Phenomenology. Intl J. Multiphase Flow 26, 783–831.

Marchioro, M., Tanksley, M., Wang, W. & Prosperetti, A. 2001 Flow of spatially non-uniform
suspensions – Part II: Systematic derivation of closure relations. Intl J. Multiphase Flow 27,
237–276.

Mondy, L. A., Ingber, M. S. & Dingman, S. E. 1991 Boundary element method simulations of a
ball falling through quiescent suspensions. J. Rheol. 35, 825–848.

Rinaldi, C. & Brenner, H. 2002 Body versus surface forces in continuum mechanics: Is the
Maxwell stress tensor a physically objective Cauchy stress? Phys. Rev. E 65, 36615.

Rinaldi, C. & Zahn, M. 2002 Effects of spin viscosity on ferrofluid flow profiles in alternating and
rotating magnetic fields. Phys. Fluids 14, 2847–2870.

Rosensweig, R. E. 1997 Ferrohydynamics. Dover.

Rosensweig, R. E. 2003 Basic Equations for Magnetic Fluids with Internal Rotations. Lecture Notes
in Physics. Vol. 594, pp. 61–84. Springer.

Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal sus-
pensions. J. Rheol. 46, 1031–1056.

Thomas, D. G 1969 Transport characteristics of suspensions: VII A note on the viscosity of
Newtonian suspensions of uniform spherical particles. J. Colloid Sci. 20, 267–277.

Wang, W. & Prosperetti, A. 2001 Flow of spatially non-uniform suspensions – Part III: Closure
relations for porous media and spinning particles. Intl J. Multiphase Flow 27, 1627–1653.

Zuzovsky, M., Adler P. M. & Brenner, H. 1984 Spatially periodic suspensions of convex particles
in linear shear flows. III. Dilute arrays of spheres suspended in Newtonian fluids. Phys. Fluids
26, 1714–1721.


